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Abstract Nonlinear turbidity‐discharge relationships are explored in the context of sediment sourcing
and event‐driven hysteresis using long‐term (≥12‐year) turbidity observations from the tidal freshwater
and saline estuary of the Hudson River. At four locations spanning 175 km, turbidity generally increased
with discharge but did not follow a constant log‐log dependence, in part due to event‐driven adjustments in
sediment availability. Following major sediment inputs from extreme precipitation and discharge events in
2011, turbidity in the tidal river increased by 20–50% for a given discharge. The coherent shifts in the
turbidity‐discharge relationship along the tidal river over the subsequent 2 years suggest that the 2011 events
increased sediment availability for resuspension. In the saline estuary, changes in the sediment‐discharge
relationship were less apparent after the high discharge events, indicating that greater background turbidity
due to internal sources make event‐driven inputs less important in the saline estuary at interannual time
scales.

Plain Language Summary Turbidity is a widely accepted proxy for suspended sediment
concentration and an important factor for contaminant transport and water quality. Here we show that
turbidity depends on river discharge in long‐term observations at multiple locations in an estuary. Such
relationships are often used in rivers, but have not been commonly used in estuaries and tidal rivers,
where tides and salinity also contribute to variability. Turbidity in the freshwater tidal region was more
sensitive to discharge than in the saline estuary. Massive inputs of sediment due to extreme precipitation and
flooding in 2011 resulted in increased sediment availability in the tidal river over multiple years.
Turbidity throughout the tidal river was elevated for 2 years following the events, but changes were not
apparent in the saline estuary. The observations provide guidance on recovery time scales for estuaries and
tidal rivers to event‐driven sediment inputs, which affects the delivery of material from the watershed to the
coastal ocean as well as other impacts on water clarity.

1. Introduction

Due to the challenges in continuously monitoring suspended sediment concentration (SSC), SSC and sedi-
ment discharge in rivers are often empirically related to volumetric freshwater discharge (Helsel &
Hirsch, 2002). Volumetric discharge varies by orders of magnitude at event and seasonal time scales, and
it is the dominant factor controlling variability in sediment discharge. Sediment discharge increases nonli-
nearly with volumetric discharge, commonly increasing to approximately the cube of river discharge at high
flow (Nash, 1994; Syvitski et al., 2000). Consequently, large, relatively infrequent events disproportionately
contribute to cumulative sediment discharges.

Sediment‐discharge rating curves are often treated as static, and yet variability in precipitation patterns,
vegetation, land use, and tectonic activity can all affect sediment delivery and sediment‐discharge relation-
ships (Morehead et al., 2003; Walling, 1977; Warrick & Rubin, 2007; Yellen et al., 2016). Disturbance from
extreme floods can increase sediment concentrations for months to years as rivers adjust to bed incision
and landslide scarps revegetate (Ahn et al., 2017; Dethier et al., 2016; Gray, 2018; Warrick et al., 2013).
The duration and timing of low‐discharge conditions can affect in‐stream storage and SSC during subse-
quent higher discharge periods (Gray et al., 2014; Walling et al., 1998). Sampling frequency can also contri-
bute to uncertainty or introduce bias into sediment discharge measurements (Coynel et al., 2004), and the
variability in time scales of watershed response that can be diagnosed depends on the functional form of
the sediment‐discharge relation (Ahn & Steinschneider, 2019).
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Rivers supply sediment to coastal regions, where tides, waves, and density‐driven circulation also play cen-
tral roles in sediment transport. In estuaries, salinity gradients drive landward near‐bottom circulation that
leads to sediment trapping and regions of higher sediment concentration, or estuarine turbidity maxima
(ETMs) (Burchard et al., 2018; Postma, 1961). River discharge alters sediment input from the watershed
but also affects the salinity distribution and thus the location and magnitude of sediment trapping at seaso-
nal and event time scales. Tidal currents also contribute to variability in SSC, directly through sediment
resuspension and indirectly by affecting the salinity distribution. In the tidal freshwater part of an estuary,
tidal resuspension and sediment supply from the river are the key factors in SSC variability (Dalrymple &
Choi, 2007; Ralston & Geyer, 2017). Tidal freshwater regions provide crucial links in the movement of mate-
rial to the coastal ocean, and yet they have received less study than fluvial or estuarine environments
(Hoitink & Jay, 2016).

This study uses long‐term (≥12‐year) observations to characterize turbidity‐discharge relationships in a tidal
river and estuary, including the response following sediment inputs frommajor discharge events. Because it
is easier to measure, turbidity is often used as a proxy for SSC (Ahn et al., 2017; Yellen et al., 2014), and tur-
bidity has been shown to correlate well with SSC in the tidal river (Ralston & Geyer, 2017) and within the
watershed of the study (McHale & Siemion, 2014). In late summer 2011, tropical cyclones Irene and Lee
delivered intense precipitation over much of the U.S. Northeast, increasing discharge and sediment delivery.
In the Delaware estuary, sediment input of 1.4 Mt in 2 weeks was similar to the long‐term annual average,
and SSC in the ETM of the Delaware remained elevated for several months (Sommerfield et al., 2017). In the
Connecticut River estuary, input from Irene of 1.2 Mt was twice the annual average, and the sediment‐
discharge relationship in the tidal river was elevated for the following 2 years compared to before the storm
(Yellen et al., 2014). In the Hudson River estuary, sediment input from Irene and Lee was about 2.7 Mt, more
than twice the annual average (Ralston et al., 2013; Wall et al., 2008). The events increased turbidity in the
months following the events, but the response to this sediment input has not been examined at longer time
scales. In this study, we use long‐termmonitoring data to assess the turbidity‐discharge relationships at mul-
tiple locations along the tidal Hudson River and quantify the time scales over which the discharge events
altered turbidity in the system.

2. Methods
2.1. Site Description

The Hudson River estuary extends about 265 km from the Atlantic Ocean to tidal limit at Troy (NY).
Along‐estuary distances in the Hudson are typically reported with respect to The Battery in New York
Harbor as 0 river km (rkm), but The Battery is located about 25 km landward of the natural mouth between
Sandy Hook and Rockaway Peninsula. The tidal range averages about 1.5 m at the mouth, decreases to 1 m
midestuary, and increases to 1.5 m at the head of tides (Ralston et al., 2019). The salinity intrusion varies
from about 40 rkm during high river discharge to 120 rkm during low discharge (Bowen & Geyer, 2003;
Ralston et al., 2008).

The primary ETM in the Hudson is located near 20 rkm, formed by bottom salinity fronts associated with a
constriction (Geyer et al., 2001; Traykovski et al., 2004). During moderate and low discharge, a secondary
ETM forms near 55 rkm (Nitsche et al., 2010; Ralston et al., 2012). In the primary ETM, near‐bottom sedi-
ment concentrations can exceed 1 g L−1, and concentrations are greater than 100 mg L−1 in much of the sal-
ine estuary. In the tidal river, sediment concentrations are generally less than 100 mg L−1 and vary with river
discharge and tidal forcing (Ralston & Geyer, 2017; Wall et al., 2008). Sediment inputs come from the two
largest tributaries, the Mohawk and Upper Hudson Rivers, which converge just above the tidal limit.
Numerous smaller tributaries also discharge into the tidal Hudson, cumulatively increasing the sediment
load by 30–70% (Wall et al., 2008).

2.2. Observations

Turbidity data were collected from monitoring stations located along the estuary. Data were accessed
through the Hudson River Environmental Conditions Observing System (www.hrecos.org), which organizes
monitoring data from multiple partner organizations, and the Centralized Data Management Office (cdmo.
baruch.sc.edu). Monitoring stations were at Schodack Island (212 rkm, available 2008–2019, partner
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organization Cary Institute of Ecosystem Studies), Tivoli North Bay (156 rkm, 2000–2019, Hudson River
National Estuarine Research Reserve, HRNERR), Norrie Point (132 rkm, 2008–2019, HRNERR), and
Piermont (37 rkm, 2008–2019, Lamont‐Doherty Earth Observatory) (Figure 1). Under most forcing condi-
tions, Piermont is in the saline estuary and the other three stations are in the tidal freshwater (Hoitink &
Jay, 2016).

All stations recorded near‐surface turbidity. Time series were processed for quality control based on visual
inspection to remove spurious outliers or anomalous trends indicative of instrument fouling. The quality
control removed 0.3% to 2.8% of the measurements, depending on the station. The Tivoli North Bay sensor
is located in a small channel connecting to a side embayment, so we only used measurements during flood
tides. Daily median turbidity values were used to minimize the influence of individual badmeasurements on
longer term variability. At Tivoli, water samples were collected, filtered, dried, and weighed to measure sus-
pended solids concentration for comparison with turbidity. The regression slope for total suspended solids
(mg L−1) was 1.2 times the turbidity (NTU, r2 = 0.52, n = 219). Turbidity sensors at the other stations were
not calibrated to SSC, but previous studies in the saline estuary and tidal river have also found calibrations
with slopes of around 1 (Ralston & Geyer, 2017; Ralston et al., 2013).

Volumetric discharge (Qr) and sediment discharge (Qs) measurements were collected from U.S. Geological
Survey (USGS) gauging stations on the Mohawk and Upper Hudson. The Mohawk (at Cohoes, 01357500)
has volumetric discharge 1917–2019 and sediment discharge 1954–1959, 1976–1979, and 2002–2019. The
Upper Hudson (Waterford, 01335770) has volumetric discharge 1887–1956 and 1976–2019 and sediment dis-
charge 1976–2014. Mean daily mean SSC were calculated with SSC = Qs/Qr.

Turbidity was related to Qr by locally weighted scattered smoothing, or LOWESS (Cleveland, 1979; Helsel &
Hirsch, 2002). The LOWESS approach has been used for sediment discharge rating curves in rivers, includ-
ing in trend analyses following discharge events (Gray, 2018; Warrick et al., 2013). LOWESS regressions
were calculated for log‐transformed discharge and turbidity with a smoothing factor of 0.25. A bias

Figure 1. Turbidity at monitoring stations along the estuary. (a) Station locations, (b) daily average discharge from the
Upper Hudson and Mohawk, noting tropical storms Irene and Lee in 2011, and (c–f) daily median turbidity from
Schodack Island, Tivoli North Bay, Norrie Point, and Piermont.
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correction factor was included to calculate turbidity from discharge using the regression (Cohn, 1995;
Ferguson, 1986), with the form C = 10^(Cout + σ2/2), where Cout is the output from the LOWESS
regression to log10(Qr) and σ2 is the variance of the residual. The variance of the residual was calculated
in fractional subsets of Qr similar to the LOWESS smoothing factor to account for variability in the
regression fit.

3. Results

Over the observation period (2008–2019), Irene and Lee accounted for the highest river discharge and
observed turbidity (Figure 1). The turbidity during and immediately following the 2011 events was greatest
in the upper tidal river at Schodack Island, with 1,000 NTU during Irene and 500 NTU during Lee. At the
Tivoli North Bay and Norrie Point stations in the tidal river, turbidity was 200–300 NTU during the events.
Increased turbidity was recorded during other high discharge periods, including spring freshets in 2013,
2014, and 2016, but those maxima were less than half than during Irene. In the saline estuary, the
Piermont station was not operational during the 2011 events. During other years, the maximum turbidity
at Piermont was typically around 100 NTU, with generally higher turbidity during the winter and spring
and lower in the summer.

Turbidity from the four stations is plotted against discharge, and all the locations have positive slopes
(Figure 2). At Schodack Island, the turbidity dependence on discharge has a form similar to many rivers
(Nash, 1994), with a greater slope at higher discharge (Qr > 400 m3 s−1) and weaker dependence at lower
Qr. Schodack is in a shallow and sandy part of the tidal river (Collins & Miller, 2012; Nitsche et al., 2007),
so resuspension of fine sediment is limited and turbidity varies strongly with river inputs. The slightly nega-
tive slope at low discharge may be an artifact of limited data or may be due to increased organic particles
during summer low discharge (Ralston & Geyer, 2017). Farther seaward, at the Tivoli and Norrie Point sta-
tions, turbidity increases more gradually with discharge (Figures 2b and 2c). Discharge varies annually by
about an order of magnitude, and turbidity in the tidal river varies by more than an order of magnitude.
The turbidity variability in the tidal freshwater river is greater than that in the saline estuary, where the
annual range typically spans a factor of 2–3 (Bokuniewicz & Arnold, 1984; Ralston & Geyer, 2017; Ralston
et al., 2012). Correspondingly, the turbidity‐discharge regression at Piermont has a narrower range than

Figure 2. Turbidity versus river discharge (Qr) at (a) Schodack Island, (b) Tivoli North Bay, (c) Norrie Point, and
(d) Piermont. Daily turbidity data are in black, and LOWESS regressions are colored. Marker shading represents tidal
amplitude based on the water level at The Battery (NOAA # 8518750).
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those at the tidal river stations, and discharge dependence is weaker (Figure 2d). The LOWESS fits between
discharge and turbidity at the tidal river stations had higher correlations (r2 = 0.42 at Schodack, 0.24 at
Tivoli, and 0.19 at Norrie) than at Piermont in the saline estuary (r2 = 0.12).

Scatter in the turbidity‐discharge relationships is due to the many processes that affect turbidity in addition
to discharge. Tidal amplitude affects sediment resuspension, and residuals in the LOWESS fits were posi-
tively correlated with tidal amplitude at all four locations, but the correlations were weak (r2 < 0.005 at
the tidal river stations and r2 = 0.02 at the estuarine Piermont station). Sediment resuspension and trapping
can also vary with the salinity distribution, wind, and bed sediment properties. Lags in sediment transport
can be weeks to months (Ralston & Geyer, 2009, 2017), distorting the correspondence between the daily dis-
charge and turbidity along the estuary. Antecedent discharge conditions affect sediment availability in the
estuary, with fine sediment accumulating during higher discharge and subsequently increasing tidal resus-
pension, potentially changing the relationship with daily discharge (Wall et al., 2008).

To evaluate whether inputs from Irene and Lee affected sediment availability in the estuary and thus turbid-
ity over longer time scales, the turbidity versus discharge relationship is considered on a yearly basis.
Turbidity time series are segmented by water year (1 October to 30 September) to reflect the seasonality of
higher discharge in the late fall, winter, and spring and lower discharge summer. As an example, observa-
tions for individual years are shown for Tivoli North Bay and compared to the regression for the entire record
(Figure 3). Clustering of median daily observations above or below the LOWESS fit of the full 12‐year record
represents a shift in the turbidity‐discharge relationship. Increased sediment availability following Irene and
Lee corresponds to higher than average turbidity (for a given discharge) in 2012 and 2013, as well as a few
anomalously high turbidity observations during water year 2011 (Figures 3d and 3e). In contrast, turbidity
tends to be less than the long‐term regression for most discharge conditions in 2015 (Figure 3g).

Figure 3. (a–h) Turbidity versus river discharge at Tivoli North Bay by water year from 2009 to 2016. The full record is in black, and data for each year are colored.
The LOWESS fit to the full record is gray.
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Over the turbidity observation period, the combined annual average discharge from Upper Hudson and
Mohawk Rivers varied by almost a factor of 2, from 350 to 650 m3 s−1, and the maximum combined daily
discharge varied by about a factor of 3, from 1,460 to 4,460 m3 s−1 (Figure 4a). Annual sediment inputs from
the rivers were calculated based on observed discharge and regressions to long‐term sediment discharge
observations (Ralston et al., 2020), since the direct measurements of sediment discharge did not span the full
period (Figure 4b). The most notable variability in sediment inputs over this period was the large increase
from the Mohawk with the storm events in 2011.

Annual averages of turbidity in the tidal freshwater and saline estuary varied by about a factor of 2 over the
same period (Figure 4c). The interannual variability in average turbidity is in part due to variation in river dis-
charge, with higher turbidity during years with greater average discharge. However, the goal here is to assess
whether hysteresis in the turbidity‐discharge relationship may also contribute. To quantify this, we calculate
the annual average of the ratio of the measured turbidity to that predicted by the turbidity‐discharge regres-
sions shown in Figure 2. This turbidity ratio represents the factor by which the turbidity differed from the
long‐term regression, accounting for interannual variations in discharge (Figure 4d). Discretization at semi-
annual and quarter‐annual intervals was also examined, with similar (but noisier) results.

Similar interannual variation in turbidity relative to the long‐term regression was observed among the three
tidal freshwater stations (i.e., Schodack, Tivoli, and Norrie Point), despite separation of about 80 km and dif-
ferences in local bed sediment. In 2012 and 2013, turbidity at all three locations was greater than expected
based on the long‐term regression, by factors of about 1.4 at Schodack, 1.3 at Tivoli, and 1.5 at Norrie. In
2010 and prior years, the turbidity factors were close to or less than 1 at all three stations. The turbidity factor
increased at Tivoli and Norrie Point in 2011, but this could be due to large sediment inputs from tributaries

Figure 4. Discharge and turbidity by water year. (a) Mean and maximum discharge of the Upper Hudson and Mohawk
rivers, (b) annual sediment input from the Mohawk and Upper Hudson, (c) annual average turbidity in the tidal river and
estuary, and (d) annual average of the ratio of measured turbidity to that predicted by the long‐term Qr regressions
(Figure 2).
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near these stations during Irene and Lee at the end of 2011 water year (Ralston et al., 2013). After 2013, the
turbidity ratios returned to values similar to 1, representing a return to long‐term average conditions. Values
less than 1 before and after 2011–2014 reflect that the long‐term regression includes the elevated turbidity
from Irene and Lee. Average turbidity in the tidal river thus depended both on Qr that year and on hysteresis
in the turbidity‐discharge relationship. For example, the mean Qr in 2012 (390 m3 s−1) was less than average
(460 m3 s−1), and yet the average turbidity that year was the second highest overall (Figure 4c). In 2013, the
turbidity increased in part because the discharge increased, but also because of the above‐average turbidity‐
discharge relationship (Figure 4d).

Another approach to characterizing the temporal variability in the turbidity‐discharge relationship is to cal-
culate the slope of the cumulative residual between the observed and predicted turbidity (Gray, 2018).
Periods when observed turbidity was greater than expected have a positive slope for the cumulative residual,
and periods with turbidity less than expected have negative slopes. Results using the cumulative residual
slopes were consistent with the turbidity ratios, with positive slopes during years with turbidity ratio greater
than 1 and negative residuals for turbidity ratios less than 1 (Figure S1 in the supporting information).
Similarly, the cumulative residual slopes at the tidal river stations were maximum in 2012 and 2013, after
Irene and Lee, and decreased to zero or negative values in 2014 or 2015 and after.

The temporal variability in the turbidity‐discharge relationship was coherent among the freshwater tidal sta-
tions, but observations in the saline estuary did not exhibit the same interannual response (Figure 4c). For
example, the turbidity ratio at Tivoli was strongly correlated with that at Norrie Point (r2 = 0.93, p < 0.001,
n= 11) and had a weaker correlation with Schodack Island (r2 = 0.63, p = 0.028, n= 12), but the correlation
with Piermont in the saline estuary was not significant (r2 = 0.33, p = 0.35, n = 10). The Piermont station
exhibited only a modest increase in the turbidity ratio in 2012 after Irene and Lee (with a data gap in
2013) and in general has less variability in the turbidity‐discharge relationship.

The turbidity ratios in the estuary were not significantly correlated with the year‐to‐year variability in
the sediment mass inputs from the Mohawk and Upper Hudson (Figure 4b). To evaluate the influence of
the variability in watershed inputs, we also calculated the residual of the LOWESS regressions of
log10(SSC) versus log10(Qr) for the tributaries on an annual basis. Precipitation from Irene and Lee was
focused in the Mohawk watershed and the Catskill Mountains east of the Hudson, leading to mass wasting,
increased erosion, and potential hysteresis in the sediment‐discharge relationship for these regions (Ahn &
Steinschneider, 2019). In water years 2012–2014 following the events, the average SSC in the Mohawk
increased by a factor of about 1.2 above the regression values, but the Mohawk turbidity ratio was not sig-
nificantly correlated with the turbidity ratios in the estuary. As expected from precipitation patterns during
Irene‐Lee, the turbidity‐discharge ratio for the Upper Hudson did not change post‐event.

4. Summary and Discussion

Long‐termmonitoring data allow for characterization of turbidity‐discharge relationships in the estuary that
might be obscured by variability at tidal to seasonal time scales. In the tidal freshwater, turbidity depended
strongly on discharge (Figure 2). Average residuals between observed turbidity and that predicted from the
discharge regressions were coherent among stations in the tidal river, with increased turbidity in the 2 years
following tropical storms Irene and Lee (Figure 4). Similarly, in New England watersheds, adjustment time
scales for channel morphology following Irene, and for subsequent, smaller discharge events, were found to
be 1–2 years (Renshaw et al., 2019). Watershed sediment supply depends in part on revegetation of land-
slides and bank failures, which adjusts at multiyear time scales (Dethier et al., 2016; Gray et al., 2014;
Yellen et al., 2014). Watershed sediment supply from the Mohawk increased relative to discharge during
2012–2014 due to these geomorphic adjustments in its steep tributaries (Ahn & Steinschneider, 2019) and
thus may contribute to the 2012–2013 increase in the turbidity factor in the tidal river (Figure 4d).
However, we observed a similar increase in the SSC factor relative to the discharge relation for the
Mohawk in 2017, when the turbidity factors at tidal river stations were less than or equal to 1. Therefore,
the increased turbidity in the tidal river was at least in part determined by the pulsed input to the mobile
pool, the signal of which relaxed over 2013–2014 (Figure 4d). The similar response among stations separated
by 80 km suggests that the increased sediment availability was not limited to a small region or due to loca-
lized influence of a particular tributary.
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Increased turbidity suggests an increase in SSC, particularly for a fixed particle size distribution.
Alternatively, temporal decreases in the dominant particle size could increase turbidity and change the rela-
tionship to SSC (Downing, 2006). Seasonal variation in the slope between turbidity and SSC of about a factor
of 2 has been noted in the tidal Hudson, likely due to changes in particle size with discharge (Ralston &
Geyer, 2017). Thus, the shift toward higher turbidity ratios may reflect a combination of greater availability
and finer grain size following discharge events (Yellen et al., 2016). The contribution of organic material to
turbidity also varies seasonally, as on average SPM samples in summer and fall had higher organic fractions
than in the first half of the year. However, our averaging of turbidity ratios at annual time scales reduces
effects of seasonal variation in the relationship between turbidity and SPM on discharge dependence. Due
to the relatively turbid conditions and low light availability in the Hudson, phytoplankton are also not
expected to contribute significantly to the turbidity signal (Cole et al., 1992).

The turbidity responses differed between the tidal river and saline estuary, where changes in the
turbidity‐discharge relationship were less apparent following the discharge events. In the tidal river, SSC
tends to be lower and the bed less muddy than in the saline estuary (Nitsche et al., 2007). The sediment avail-
able for resuspension at event to seasonal time scales has been termed the mobile sediment pool (Geyer &
Ralston, 2018; Schoellhamer, 2011; Wellershaus, 1981). While the size of the mobile pool is difficult to quan-
tify, the persistent increase in turbidity in the tidal river following Irene and Lee suggests that the sediment
input from the storms represented a major increase in the size of the mobile pool. Based on sediment fluxes
measured in the lower tidal river, about two thirds of the sediment input by the events remained in the tidal
river several months after the events (Ralston et al., 2013), and the 2‐year period of increased turbidity may
be indicative of the time scale for the tidal river to adjust back to pre‐storm conditions.

In the saline estuary, turbidity on average is greater, the bed is muddier, and the mobile pool is larger than in
the tidal river. Previous studies have highlighted the seasonal to annual variation in SSC and deposition
(Geyer et al., 2001; Woodruff et al., 2001). Observations in the lower ETM found that the freshets in 1998
and 1999 each deposited about 0.3 Mt of new sediment, despite large differences in the watershed sediment
inputs in those years (Woodruff et al., 2001). The limited interannual variability in the turbidity‐discharge
residual at Piermont found here is consistent with this decoupling between deposition in the ETM and the
watershed inputs. If the mobile pool in the saline estuary is many times the annual average input, then the
fractional increase from Irene and Leemay beminor. Similarly, in San Francisco Bay, a decrease in sediment
supply associated with dam construction did not affect sediment concentrations until decades later, first in
the tidal freshwater Delta and subsequently in the saline estuary (Hestir et al., 2013; Schoellhamer, 2011;
Schoellhamer et al., 2013). In the Penobscot estuary, the mobile sediment pool was estimated to be 6–8 times
the annual average input based on recovery time scales following a contaminant release (Geyer &
Ralston, 2018).

Differences between the tidal river and saline estuary in the hysteresis of the turbidity‐discharge relationships
reflect the relative coupling between sediment supply and river discharge. In the saline estuary, the mobile
pool is large compared to the annual supply, such that a major discharge event does not drastically increase
sediment availability. In contrast, fine‐grained bed sediment in the tidal river is more limited, so event inputs
represent a fractionally bigger change, and turbidity is increased for a couple of years as the added sediment
gradually moves seaward and deposits in lower energy shoals and wetlands (Ralston & Geyer, 2017; Yellen
et al., 2020). For comparison, the hysteresis in turbidity‐discharge relationship in the tidal river is similar
in duration to observations on steep streams following Irene (Renshaw et al., 2019) but shorter in duration
than observed in rivers along the U.S. West Coast, where sediment concentrations remained elevated for
5 years or longer after events (Gray, 2018; Warrick et al., 2013). Long‐term measurements at stream gauging
stations allow for assessment of the variability in turbidity/sediment‐discharge relationships in the
watershed, but such long‐termmeasurements are far less common in estuaries. These results point to the uti-
lity of such measurements for assessing the multiple time scales of sediment variability in other estuaries.

Data Availability Statement

The data used in this study were all downloaded from publicly available sources (USGS, https://waterdata.
usgs.gov/nwis; HRECOS, https://hrecos.org/; or CDMO, http://cdmo.baruch.sc.edu/) as described in the
Methods section. Data used in the figures are available at http://doi.org/10.5281/zenodo.3936047
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